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•	 The chains can be attached to the surface either by chemical bonds or 

by physical interactions. In either case, the strength of the bond anch­
oring the polymer to the surface needs to be rather greater than kB T, 
otherwise there wi1l be a tendency for the chain to become detached 
from the surface. 

4.3.5 Depletion interactions 

The final interaction we consider is, like the electrostatic interactions and 
polymer stabilisation, ultimately due to osmotic pressure, but in this case 
!he interaction is attractive rather than repulsive. Depletion interactions arise 
whenever the solution contains, in addition to the suspended particles, other 
particles intermediate in size between the suspended particles and the size of 
the solvent molecules. The most common case occurs when the suspension 
contains a dissolved polymer which does not adsorb onto the surface of the 
particles. 

The situation is i1lustrated in Fig. 4.5. The polymer molecules, depicted 
here as spheres, are excluded from a region of thickness L away from the 
surface of the particles-the depletion zone. As the particles approach, the 
depletion zones overlap, with the result that there is a volume of solution 
between the particles in which the concentration of polymer molecules is 
less than it is in the bulk solution. This means that the difference in osmotic 
pressure between the bulk solution and the depletion zone leads to a force 
pushing the particles together. 

For a dilute solution of polymers, or indeed any other particles, which do not 
interact, the osmotic pressure Posm is given simply by the ideal gas expression 

N 
Posm = ykBT,	 (4.40) 

where there are N polymer molecules in volume Y of solution. The net 
interaction potential between the particles Fdep is simply 

(4.41) 

Fig. 4.5 The depletion interaction. Polymer 
coils are excluded from a depletion zone near 
the surface of the colloidal particles; when the 
depletion zones of two particles overlap there 
is a net attractive force between the particles 
arising from unbalanced osmotic pressures. 
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where Vdep is the total volume between the particles from which the polymeI> 
are excluded. For two spheres of radius a, at a centre-to-centre separation" 
simple geometry gives 

4]( 3 3r + r . (4.42)Vdep = 3(a + L ) (I - 4(a + L) 16(a +3 
L)3 

) 

The depletion interaction is never very large, but it is always attractive, and 
the depth of the well can become comparable to kBT; thus increasing the 
strength of the depletion interaction by addition of free polymer can lead to 
phase separation or aggregation in colloidal systems. 

4.4 Stability and phase behaviour of colloids 

We have seen how a variety of interactions between colloidal particles may 
lead to the particles either repelling or attracting each other; these interactions 
lead to interesting phase behaviour. In some ways this phase behaviour can be 
considered to be analogous to the phase behaviour of matter, with the colloidal 
particles taking the role of atoms or molecules. One can envisage a phase 
transition from a solid-like phase to a liquid-like phase, driven by attraction 
between the particles. More usually, however, the attractive energy is mud 
greater than kB T. Rather than having an equilibrium between a dense liquid-like 
phase and a gas-like phase, whenever two particles meet, they stick irreversibly, 
This leads to the formation of open flocs which eventually fall out of suspension 
(flocculate). 

We can summarise some of the ways in which the interaction between 
colloidal particles can be changed from repulsive to attractive: 

•	 we can add salt to an electrostatically stabilised colloid, reducing the 
Debye screening length and decreasing the magnitude of the electrostatic 
repulsion relative to the van der Waals attraction; 

•	 we can add poor solvent to a polymerically stabilised colloid; the result· 
ing attractive polymer/polymer interactions will lead to a net attractioD 
between the colloid particles; 

•	 we can physically or chemically remove grafted polymer chains from the 
surface of the colloidal particles; 

•	 we can add non-adsorbing polymer to cause an increase in the size of the 
depletion interaction. 

4.4.1 Crystallisation of hard-sphere colloids 

When the forces between colloidal particles are repulsive at all separations 
one has a stable suspension. If the particles are spherical with a rather narrow 
size distribution, then as one increases the concentration of particles (e.g, 
if the dispersing liquid is allowed to evaporate) one finds a remarkable transitioD 
from a disordered arrangement ofparticles, analogous to a liquid, to a crystalline 
packing of the particles. These colloidal crystals have true long-range order, 
often the diameter of the colloidal particles falls between 100 nm and II!In, 
and in this case the crystal will diffract light, resulting in striking opalescent 
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Fig. 4.6 A water-borne latex suspension 
imaged by environmentat scanning elec­
tron microscopy, showing the formation of 
ordered regions. Reprinted with permission 
from He and Donatd (1996). Copyright 1996 
American Chemical Society. 

interference effects. In fact, the gemstone opal is a natural colloidal crystal com­
posed of submicrometre-sized silicon dioxide particles. The systems typically 
studied in the laboratory are composed of submicrometre polymer particles 
produced by a so-called emulsion polymerisation process, which yields rather a 
narrow particle size distribution. The particles are stabilised against coagulation 
by coating them with a layer of short polymer chains grafted to the surface. 
In fact, these systems are very similar to the latices produced on a vast 
industrial scale to form the basis of emulsion paints and water-based varnishes. 
An environmental scanning electron micrograph of one such material is shown 
in Fig. 4.6, showing clearly the tendency of the particles to form close-packed 
ordered regions. 

A good starting point for understanding the phenomenon of colloidal 
crystallisation is to be found in a very simple model developed by theorists 
to understand liquids-the hard-sphere model. As its name suggests, in this 
model we consider an assembly of perfect spheres which interact via a potential 
which is zero except where two spheres overlap, in which case it is infinite. 
This model is in fact rather a good approximation to a sterically stabilised 
colloid in which the thickness of the stabilising polymer layer is much less than 
the radius of the particles. 

We know that the maximum density one can achieve in packing hard spheres 
is obtained when they are arranged in a regular close-packed structure, in which 
case the volumefraction of spheres is 0.7404. If the spheres are packed randomly 
as closely as possible, then the maximum volume fraction obtainable (random 
close packing) can be shown to be around 0.63. So one can see that at very 
high volume fractions simple packing constraints force the spheres to take up 
aclose-packed crystalline structure. 

However, this provides only a very partial explanation of colloidal crystal­
lisation. What is surprising is that crystals appear at a much lower volume 
fraction of spheres than that for either regular close packing or random close 
packing. In fact, at a volume fraction of 0.494 there is an abrupt transition to 
acrystal with a volume fraction of 0.545. This is a true phase transition; if one 
prepares a suspension with an intermediate volume fraction it will separate into 
two coexisting phases. 
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What is the origin of this phase transition? The first point to note is that 
temperature does not directly enter into the problem. Because the only possible 
energies for any configurations of the sphere are either zero (if no spheres 
overlap) or infinity (if two spheres do overlap) the Boltzmann weights for 
any configuration can only be either unity or zero, with no dependence on 
temperature. So the volume fractions of the coexisting liquid and solid phases 
are completely independent of temperature. The transition between solid and 
liquid must be driven entirely by entropy. 

This seems paradoxical. How can it be that for some volume fractions, 
a regular crystal with long-range order can have a higher entropy-that is, 
be more disordered-than a random, liquid-like, arrangement? The reason is 
related to the difference between random and regular close-packing densities. 
In the crystal state, we lose entropy compared to the amorphous state by virtue 
of the long-range order, but because crystalline packing is more efficient than 
random packing each individual sphere has more space locally to explore, and 
thus has a higher entropy in the crystalline state compared to the amorphous 
state. 

Another way of thinking about this involves the idea of excluded volume. 
The fact that two spheres cannot overlap leads to an effective repulsive force 
between spheres of entropic origin. We can understand this by remembering 
how excluded volume is dealt with in the van der Waals theory of non-ideal 
gases. Recall that for a perfect gas one can write the entropy per atom Sidell 

of N atoms in a ideal V as 

Sideal = kB In (a ~) (4.43) 

where a is a constant. Now, if the gas atoms have a finite volume b this reduces 
the volume accessible to any given atom from V to V - Nb, and we musl 
modify our expression for the entropy accordingly: 

S = kB In ( a (V ~N b)) . (4.44) 

We can rewrite this in terms of Sideal as 

S = Sideal + kB In (I _b;) , (4.45) 

and if the volume fraction of atoms is low we can expand the logarithm to yield 

S = Sideal - kB ( ~) b, (4.46) 

with a corresponding free energy given by 

F = Fideal + kBT (~) b. (4.47) 

Thus there is an effective repulsion between the atoms, and in the case ofa 
hard-sphere colloid it is an effective interaction of this kind that causes the 
particles to arrange themselves on a crystal lattice. 

Of qmrse, at the volume fractions at which hard spheres crystallise the 
approximations used in this simple expression have long since broken down, 
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and the theory needs to be considerably refined to take into account the 
possibility that more than two particles may be interacting simultaneously, and 
to lift the mathematical approximations appropriate to a low particle volume 
fraction. Nonetheless developments of this approach form the basis of modern 
statistical mechanical theories of the hard-sphere fluid. 

Before we leave the subject of crystallisation in hard-sphere systems, there is 
one subtle point that needs to be addressed. There are two different crystal 
structures which are close packed, namely face-centred cubic (FCC) and 
hexagonal close packed (HCP), and both have an identical maximum packing 
fraction. The difference between the two types of packing is best understood 
in terms of Fig. 4.7. Once one close-packed layer is laid down, there are two 
different ways in which subsequent layers can be placed. In the HCP structure, 
the sequence of layers alternates as ababab... , while in an FCC structure the 
sequence is abcabc.... 

Experimentally it is found that colloidal crystals as normally prepared 
have a random sequence of close-packed planes, corresponding to an HCP 
structure with a very large number of stacking faults. This is of some practical 
significance, as potentially colloidal crystals could have important applications 
in photonics, as materials with a so-called photonic bandgap. In such a 
material diffraction effects can lead to a situation in which light of a certain 
wavelength is unable to propagate in any direction. The existence of such 
bandgaps does, however, depend on the crystal structure being largely defect 
free. Quite recently, it has been found that there is a tiny difference in entropy 
between the FCC and HCP structure; and that it is the FCC structure that 
is always at equilibrium (Woodcock 1997, Mau and Huse 1999). Thus with 
careful preparation techniques it should be possible to prepare defect-free 
colloidal crystals with interesting optical properties. 

4.4.2 Colloids with longer ranged repulsion 

We have seen that we can produce a repulsive interaction between colloidal 
particles with a relatively long range either by having an electrostatic repulsion 
between the particles in a solution with a relatively low salt content, and thus a 
large Debye length, or by having long polymers grafted to the interface. Often 

Fig. 4.7 A single close-packed layer, illustrat­
ing that there are two sites on which a second 
close-packed layer can be placed: band c. 
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Fig. 4.8 Phase diagram for charged spheres 
in a polyelectrolyte solution as a function 
of the volume fraction of spheres t/> and the 
concentration of salt, as calculated for spheres 
of radius 0.1 J.l.m with surface charge 5000e. 
After Russel et al. (1989). 
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the range of the repulsion is large compared to molecular sizes, but still sm~1 

compared to the radius of the particle, and in this case the repulsive force can 
be treated as a perturbation of the hard-sphere interaction. Thus we anticipate 
a transition from a liquid state to a solid state, but this transition will occur al 
lower volume fractions than for a pure hard-sphere interaction. The effective 
hard-sphere radius of the colloid particles is greater than their physical radius 
because of the additional long-ranged repulsion. 

This is illustrated in Fig. 4.8, which shows the predictions of a perturbation 
theory for the phase behaviour of the order-disorder transition for charged 
spheres in a solution of an electrolyte. At high concentrations of salt, the 
Debye screening length is very small and the order-disorder transition occun 
at concentrations very close to those expected for ideal hard spheres. As thes~t 

concentration is reduced, the Debye length-and thus the range of the repulsive 
interaction-increases and the volume fraction at which the order-disorder 
transition takes place is correspondingly reduced. 

4.4.3 Colloids with weakly attractive interactions 

If the interaction between colloidal particles is attractive, then we expect 
the system to undergo a transition to a disordered, condensed phase; this is 
analogous to a gas-liquid transition in a molecular system. The best way (0 

realise this situation in practice is to add non-adsorbing polymer to a colloidal 
system that is stabilised by electrostatic interactions or by a grafted polymer 
layer; this creates a relatively weak attractive part of the potential whose 
magnitude ~epends on the volume fraction of added polymer. An example 
of the kind of phase diagram obtained by plotting the volume fraction d 
particles on one axis and the amount of added polymer-and thus the size of the 
attractive interaction-is sketched in Fig. 4.9. This diagram has been compared 
to experiment and found to be in agreement. One should compare this diagram 
to a phase diagram for a simple fluid plotted in the density/temperature plan~ 

as sketched in Fig. 2.3. In fact the statistical mechanical theories which can Ix 
used to predict phase diagrams for simple fluids are easily adapted to predict 
the phase diagrams for colloidal dispersions. 

10-2 10-1 
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The qualitative features of this phase diagram are relatively straightforward 
to understand. When the attractive interactions are weak, we get a liquid-solid 
transition driven by the effective repulsion between the particles. This repulsion 
includes both the repulsion ofentropic origin that underlies the excluded volume 
effect and any physical repulsion due to electrostatic or polymer-mediated 
interactions. The liquid-solid interaction is always first order; because there 
is a change in symmetry between the two phases the transition cannot take 
place gradually and thus there can be no critical point. When the attractive 
part of the potential becomes more important, we can have a gas-liquid 
phase separation which is analogous to the liquid-liquid unmixing transition 
discussed in Chapter 2. This transition can take place continuously, and thus 
there is a critical point. However, when the coexisting volume fraction for the 
liquid phase is large enough, this phase can lower its free energy even further 
by going over to an ordered state. Thus, according to the amount of added 
polymer, one can have a phase transition as a function of particle concentration 
from a gas to a liquid state, from a gas to a solid state, and indeed at one 
special condition there is a triple point, where gas, liquid, and solid coexist. 

4.4.4 Colloids with strongly attractive interactions 

The phase diagrams discussed in the section above are equilibrium phase 
diagrams; if one drives a system from the gas to the solid state by increasing 
the particle volume fraction, say, and if one subsequently adds more solvent 
then the transition should be completely reversible, and one should recover a 
low-density disordered state. If the depth of the attractive well in the potential 
curve is only a few times kB T, equilibrium is easily reached. However, as the 
attraction becomes larger, it is more and more difficult to reach equilibrium: if 
two particles come into contact and stick then they take longer and longer to 
unstick and try another configuration, even if the first arrangement of particles 
does not correspond to the equilibrium state. This has a profound effect on the 
structure of the aggregates, as illustrated in Fig. 4.10. 

Fig. 4.9 Calculated phase diagram for a 
colloid of hard spheres with non-adsorbing 
polymer added to the solution. The ratio of 
the sizes of the colloidal spheres to the radii 
of the polymer molecules is 0.57. After IIIett 
et al. (1995). 
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20fcourse, this relationship is valid for values 
of R between an upper limit, set by the overall 
size of the aggregate, and a lower limi t defined 
by the size of the constituent particles. This is 
the difference between a mathematical fractal, 
for which such a relationship holds for all 
values of R, and a physical fractal, for which 
the relationship holds only for a limited range 
of lengths. 
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Fig.4.10 Aggregation with and without rearrangement. In (a) the attraction is weak enough toalJIl'I 
the particles to rearrange following aggregation-this produces relatively compact aggregates. fu 

(b) the attractive energy is so strong that once particles make contact, they remain stuck in ihil 
position. Particles aniving later tend to stick on the outside of the cluster, as access to its interi~ 

is blocked, resulting in much more open aggregates with a fractal structure. 

If particles, once they have joined the aggregate, are able to rearrange, thtl 
resulting aggregate is likely to be rather compact. However, if once stuck the I 
energy of attraction is too large for the particle to move again, the aggregakl 
will be much more open in structure, because particles arriving at the aggregak 
later will tend to find access to the interior of the aggregate blocked by the 
earlier arrivals. In fact, the resulting structure is fractal in character. For a three· 
dimensional compact object the relationship between the size of the aggregate 
R and its mass M can be written R ~ M 1/3; for a fractal the corresponding 
relation is R ~ Ml/dr, where df is a fractal dimension which is less than three 
but greater than one.2 

In an idealised model of aggregation, known as diffusion-limited aggreg~ 

tion, particles are considered to diffuse randomly until they touch a membel. 
of the cluster, after which they stick without further movement. Compute!, 
simulations reveal that for this model df ~ 1.71, corresponding to very ope~: 
ramified structures. A more realistic model of aggregation would allow clusten' 
themselves to aggregate; such diffusion-limited cluster-cluster aggregation 
models yield a slightly larger value of df ~ 1.78. 

Experiments reveal that if aggregation takes place in circumstances iJ 
which aggregation is very fast, with very deep potential wells of attractiOll, 
open aggregates are found with fractal dimensions of around 1.75, whileio 
experiments carried out in slower conditions, when some rearrangement is 
presumably.permitted, fractal dimensions are somewhat larger. 

4.5 Flow in concentrated dispersions 

Adding particles to a liquid might be expected to produce a dispersion wi~ 

a viscosity greater than that of the pure liquid; this is indeed what happen~ 

but in addition to an increased viscosity concentrated dispersions can show 
pronounced non-Newtonian effects in their flow, in particular shear thinning. 


